WedX - журнал о программировании и компьютерных науках

Публикации по теме 'scikit-learn'


Ускорение обучения модели: многопроцессорность
Я потратил около 50 часов на обучение моделей XGBoost на своем ноутбуке, так что вам это не нужно! Введение Недавно я работал над проектом по ускорению обучения больших языковых моделей и решил написать об этом эксперименте в серии постов в блоге. В этом посте я оценил время, необходимое для обучения классификатора XGBoost с оболочкой scikit-learn на 20 группах новостей наборе текстовых данных . Для этого я обучил модель 50 раз на одном, 4 и 8 ядрах ЦП, используя методы..

Шпаргалка Scikit-learn: методы классификации и регрессии
Машинное обучение — это быстрорастущая технология в современном мире. Машинное обучение уже интегрировано в нашу повседневную жизнь с такими инструментами, как распознавание лиц, домашние помощники, сканеры резюме и беспилотные автомобили. Scikit-learn — это самая популярная библиотека Python для выполнения алгоритмов классификации, регрессии и кластеризации. графики и визуализация) и SciPy (для математики). В нашей последней статье о Scikit-learn мы представили основы этой..

7 утилит Scikit-learn для создания искусственных (синтетических) данных
Объясняется с помощью графических визуализаций Искусственные или синтетические данные — это тип данных, которые генерируются искусственно с помощью компьютерных алгоритмов. Противоположностью являются данные реального мира, полученные в результате реальных событий. В машинном обучении и глубоком обучении мы часто используем синтетические данные для следующих целей. Чтобы продемонстрировать, как алгоритмы машинного обучения работают за кулисами. Для проверки предположений в..

Новые материалы

Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка. Во время предварительного обучения модель обучается на неразмеченных данных с помощью..

Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..

Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv) Автор : Бар Лайт Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..

Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята? В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..

Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение. В этом процессе мы будем использовать неконтролируемое обучение, чтобы..

Учебные заметки: создание моего первого пакета Node.js
Это мои обучающие заметки, когда я научился создавать свой самый первый пакет Node.js, распространяемый через npm. Оглавление Глоссарий I. Новый пакет 1.1 советы по инициализации..

Забудьте о Matplotlib: улучшите визуализацию данных с помощью умопомрачительных функций Seaborn!
Примечание. Эта запись в блоге предполагает базовое знакомство с Python и концепциями анализа данных. Привет, энтузиасты данных! Добро пожаловать в мой блог, где я расскажу о невероятных..


Для любых предложений по сайту: [email protected]