WedX - журнал о программировании и компьютерных науках

Публикации по теме 'cnn'


Выявление рака меланомы с помощью глубокого обучения - часть 3
В Части 1 и Части 2 мы разработали неглубокую и более глубокую CNN для обнаружения наличия рака меланомы по изображениям поражений. Мы экспериментировали с такими методами, как пакетная нормализация, прерывание, нормализация локального отклика, простое увеличение данных, стандартизация изображений и т. Д. И смогли достичь точности 93,81%. Хотя этот показатель точности не является чем-то выдающимся (из-за несбалансированности данных), но он вдохновил и побудил нас пойти немного глубже :)..

Сверточные нейронные сети —«Учимся на том, что имеет значение»
В этой статье я расскажу, что такое сверточная нейронная сеть, и покажу пример на Python с использованием Tensorflow. Искусственные нейронные сети используются для решения сложных задач любого типа с помощью мощности машин. Если вам нужно вкратце об этом, я написал статью на эту тему здесь . Основная причина появления сверточных нейронных сетей заключается в том, что некоторые задачи глубокого обучения настолько сложны, что полностью связанные нейронные сети ( нейронные сети, в..

Сегментация изображений с использованием глубокого обучения — Модели и наборы данных
Сегментация изображения может быть сформулирована как задача классификации пикселей с помощью семантических меток (семантическая сегментация) или разделения отдельных объектов (сегментация экземпляров) или того и другого (паноптическая сегментация). Сегментация изображений является ключевой задачей в компьютерном зрении и обработке изображений с такими важными приложениями, как понимание сцены, анализ медицинских изображений, роботизированное восприятие, видеонаблюдение, дополненная..

Мета-обучение: научиться учиться
В последние годы было много ажиотажа вокруг идеи метаобучения в области искусственного интеллекта (ИИ). Метаобучение, также известное как «обучение обучению», представляет собой подход, который позволяет системам ИИ научиться быстро адаптироваться к новым задачам, используя свой предыдущий опыт. В этом сообщении блога мы рассмотрим концепцию метаобучения, приведем примеры и аналогии, а также обсудим преимущества и недостатки этого подхода. Что такое метаобучение? Метаобучение — это..

Освоение машинного обучения: руководство для начинающих по ключевым терминам и понятиям, включая CNN, слои…
Машинное обучение — это область исследования, которая позволяет машинам обучаться и повышать свою производительность автоматически, без явного программирования. Это подмножество искусственного интеллекта ( ИИ ), основное внимание в котором уделяется обучению алгоритмов выполнению задач на основе входных данных. Область машинного обучения быстро развивается, и новичкам может быть сложно не отставать от используемой терминологии и концепций. В этом сообщении блога мы рассмотрим..

Вступление:
Диагностика болезней сердца с ИСКУССТВЕННЫМ РАЗУМОМ и ГЛУБОКОМ ОБУЧЕНИЕМ Вступление: В эпоху здравоохранения одна из важнейших задач, с которыми сталкиваются врачи, - это правильная диагностика заболеваний у пациентов. Из-за отсутствия подготовки или иногда сложной ситуации они не могут правильно диагностировать состояние пациентов. Вот почему врач не помогает пациенту должным образом, если он ошибается при диагностике болезни у пациента. Это привело бы к заброшенности и судебным..

Вопросы по теме 'cnn'

Классификатор изображений фруктов (Python)
Я пытаюсь закодировать классификатор изображений фруктов с помощью python, попробуйте классифицировать 7 фруктов. У меня есть 15077 изображений для train_set и 4204 изображений для validation_set. Я скомпилировал код на 10 эпох и получил такие...
10.04.2024

Новые материалы

Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка. Во время предварительного обучения модель обучается на неразмеченных данных с помощью..

Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..

Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv) Автор : Бар Лайт Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..

Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята? В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..

Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение. В этом процессе мы будем использовать неконтролируемое обучение, чтобы..

Учебные заметки: создание моего первого пакета Node.js
Это мои обучающие заметки, когда я научился создавать свой самый первый пакет Node.js, распространяемый через npm. Оглавление Глоссарий I. Новый пакет 1.1 советы по инициализации..

Забудьте о Matplotlib: улучшите визуализацию данных с помощью умопомрачительных функций Seaborn!
Примечание. Эта запись в блоге предполагает базовое знакомство с Python и концепциями анализа данных. Привет, энтузиасты данных! Добро пожаловать в мой блог, где я расскажу о невероятных..


Для любых предложений по сайту: [email protected]