WedX - журнал о программировании и компьютерных науках

Публикации по теме 'sklearn-metrics'


Мультиклассовая классификация с использованием модели дерева решений
Добро пожаловать, читатели. Если вы попали прямо сюда, я настоятельно рекомендую вам вернуться и прочитать сначала по этой ссылке . Введение в проблему: - В этом блоге я хотел бы помочь вам, ребята, создать модель машинного обучения на основе алгоритма дерева решений. Здесь мы будем работать с меньшим набором данных (взято из архива ). Сначала мы будем обучать нашу модель, используя предоставленные данные, а затем будем выполнять мультиклассовую классификацию, используя..

На какой классификационной метрике сосредоточиться?
Недавно, работая над своим завершающим проектом в школе Flatiron, я глубже погрузился в алгоритмы классификации. Что я могу сказать? Что ж, очевидно, точность — не единственный показатель, на который следует обращать внимание ! Сегодня я хочу поговорить о метриках оценки моделей классификации. Для начала разберемся, что такое классификация. Классификация  — это алгоритм машинного обучения, предсказывающий, к какой выходной метке относятся входные значения. Другими словами, при..

Новые материалы

Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка. Во время предварительного обучения модель обучается на неразмеченных данных с помощью..

Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..

Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv) Автор : Бар Лайт Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..

Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята? В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..

Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение. В этом процессе мы будем использовать неконтролируемое обучение, чтобы..

Учебные заметки: создание моего первого пакета Node.js
Это мои обучающие заметки, когда я научился создавать свой самый первый пакет Node.js, распространяемый через npm. Оглавление Глоссарий I. Новый пакет 1.1 советы по инициализации..

Забудьте о Matplotlib: улучшите визуализацию данных с помощью умопомрачительных функций Seaborn!
Примечание. Эта запись в блоге предполагает базовое знакомство с Python и концепциями анализа данных. Привет, энтузиасты данных! Добро пожаловать в мой блог, где я расскажу о невероятных..


Для любых предложений по сайту: [email protected]