Публикации по теме 'recall'
Как вы должны измерить успех модели машинного обучения?
В каждой организации есть одна команда, ответственная за создание модели машинного обучения, которая используется многими командами в ней, у этих команд могут быть разные представления о том, что определяет успешную модель.
допустим, вы строите модель для выявления дефектных продуктов по изображениям.
- Исследователь данных, ваша цель может состоять в том, чтобы свести к минимуму кросс-энтропийные потери вашей модели.
– С другой стороны, менеджер по продукту может захотеть..
Оценка производительности модели машинного обучения: точность, точность, полнота и оценка F1
Давайте представим сценарий, в котором у нас есть задача классифицировать, беременна ли женщина или не беременна. В этой задаче, если тест на беременность положительный, это означает, что человек беременен, а если тест отрицательный, это означает, что человек не беременен.
В контексте задачи классификации необходимо учитывать четыре важные категории:
Истинный положительный результат (TP)
Это относится к человеку, который на самом деле беременен (положительно) и правильно..
Точность против отзыва — Основные метрики в машинном обучении
В машинном обучении точность и полнота — это метрики, используемые для оценки того, насколько хорошо работает модель. В этой статье подробно объясняется, что они из себя представляют.
В машинном обучении точность и полнота — это метрики, используемые для оценки того, насколько хорошо работает модель. В этой статье объясняется, что они из себя представляют, и даются ответы на популярный вопрос точность или полнота .
Мы рассмотрим, как вычислить точность и полноту. Мы также обсудим..
Показатели классификации: визуальные пояснения
Наглядное объяснение точности, точности, отзыва, F1-показателя, кривой ROC и AUC.
В этом посте будет наглядно описана проблема понимания таких понятий, как Точность , Точность , Отзыв , Оценка F1 , Кривая ROC и AUC , которые являются частью разработки любых задач классификации, обнаружения, сегментации и т. д. в машинном обучении. Все изображения созданы автором.
Я бы также посоветовал вам прочитать следующие статьи об этих метриках, которые очень информативны и могут помочь..
Новые материалы
Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка.
Во время предварительного обучения модель обучается на неразмеченных данных с помощью..
Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать
С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..
Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv)
Автор : Бар Лайт
Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..
Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята?
В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..
Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение.
В этом процессе мы будем использовать неконтролируемое обучение, чтобы..
Учебные заметки: создание моего первого пакета Node.js
Это мои обучающие заметки, когда я научился создавать свой самый первый пакет Node.js, распространяемый через npm.
Оглавление
Глоссарий
I. Новый пакет
1.1 советы по инициализации..
Забудьте о Matplotlib: улучшите визуализацию данных с помощью умопомрачительных функций Seaborn!
Примечание. Эта запись в блоге предполагает базовое знакомство с Python и концепциями анализа данных.
Привет, энтузиасты данных! Добро пожаловать в мой блог, где я расскажу о невероятных..