WedX - журнал о программировании и компьютерных науках

Публикации по теме 'metadata'


Чтение и редактирование метаданных изображения с помощью Python
Использование библиотеки exif Python для извлечения и изменения метаданных файлов цифровых изображений. На каждой фотографии есть нечто большее, чем кажется на первый взгляд. Изображения, сделанные цифровыми камерами и смартфонами, содержат обширную информацию (известную как метаданные ) за пределами видимых пикселей. Эти метаданные могут быть полезны во многих бизнес-кейсах. Например, системы обнаружения мошенничества для страховых претензий анализируют метаданные..

ML — это не только ML
Все, что связано с машинным обучением, значительно увеличилось — новые алгоритмы, новые фреймворки, новые инструменты, новые роли и должности. Это более чем оправданный всплеск для дисциплины, направленной на решение серьезных проблем для многих компаний и секторов. Прежде чем создавать и развертывать модели машинного обучения в рабочей среде, организация должна иметь стабильную платформу данных и отработанные процессы. Мы хотим, чтобы наши специалисты по данным работали быстро, быстро..

Новые материалы

Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка. Во время предварительного обучения модель обучается на неразмеченных данных с помощью..

Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..

Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv) Автор : Бар Лайт Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..

Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята? В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..

Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение. В этом процессе мы будем использовать неконтролируемое обучение, чтобы..

Учебные заметки: создание моего первого пакета Node.js
Это мои обучающие заметки, когда я научился создавать свой самый первый пакет Node.js, распространяемый через npm. Оглавление Глоссарий I. Новый пакет 1.1 советы по инициализации..

Забудьте о Matplotlib: улучшите визуализацию данных с помощью умопомрачительных функций Seaborn!
Примечание. Эта запись в блоге предполагает базовое знакомство с Python и концепциями анализа данных. Привет, энтузиасты данных! Добро пожаловать в мой блог, где я расскажу о невероятных..


Для любых предложений по сайту: [email protected]