WedX - журнал о программировании и компьютерных науках

Публикации по теме 'confusion-matrix'


Матрица путаницы без путаницы
Когда мы работаем над проектами машинного обучения, особенно с проблемой классификации, мы всегда имеем дело с матрицей путаницы. Так что же такое матрица путаницы? Матрица путаницы — это показатель, используемый для оценки производительности модели, состоящей из матрицы N x N, где N — количество целевых классов. Эта матрица дает общее представление о производительности и типе ошибок модели. Для задачи бинарной классификации матрица путаницы будет выглядеть так: Как мы знаем,..

Как рассчитать метрики классификации с помощью матрицы путаницы
В контролируемом машинном обучении есть два основных типа моделей: классификация и регрессия. В модели классификации матрица путаницы необходима для определения степени соответствия модели. Матрица путаницы — это таблица, используемая в машинном обучении для оценки эффективности модели классификации. В нем подводятся итоги…

Оценка категориальных моделей
Когда у вас есть категориальные данные, вы можете построить несколько моделей для прогнозирования новых наблюдений на основе данных. Вы можете создавать логистические регрессии, деревья решений, случайные леса, модели повышения и многое другое. Как вы их сравниваете и как определяете, какая модель лучшая ? Матрица путаницы Допустим, у нас есть двоичный набор категориальных данных, цель которого - предсказать, является ли что-то истинным или ложным. Мы строим несколько моделей, и..

Вопросы по теме 'confusion-matrix'

Как рассчитать FAR FRR Accuray, используя матрицу путаницы с более чем 3 классами?
У меня есть матрица путаницы 20x20. Как я могу рассчитать значения FAR, FRR, Accuracy и Precision, которые представляют всю систему? Не для каждого класса, а для всей системы.

Новые материалы

Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка. Во время предварительного обучения модель обучается на неразмеченных данных с помощью..

Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..

Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv) Автор : Бар Лайт Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..

Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята? В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..

Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение. В этом процессе мы будем использовать неконтролируемое обучение, чтобы..

Учебные заметки: создание моего первого пакета Node.js
Это мои обучающие заметки, когда я научился создавать свой самый первый пакет Node.js, распространяемый через npm. Оглавление Глоссарий I. Новый пакет 1.1 советы по инициализации..

Забудьте о Matplotlib: улучшите визуализацию данных с помощью умопомрачительных функций Seaborn!
Примечание. Эта запись в блоге предполагает базовое знакомство с Python и концепциями анализа данных. Привет, энтузиасты данных! Добро пожаловать в мой блог, где я расскажу о невероятных..


Для любых предложений по сайту: [email protected]