Публикации по теме 'cifar-10'
Классификация изображений в CIFAR 10: полное руководство
Классификация изображений в CIFAR 10: полное руководство
Глава II: Мелкая нейронная сеть
Это часть 2/3 мини-сериала, в котором используется классификация изображений в CIFAR-10. Посмотрите последнюю главу, в которой мы использовали логистическую регрессию , более простую модель.
Для понимания softmax, кросс-энтропии, мини-пакетного градиентного спуска, подготовки данных и других вещей, которые также играют большую роль в нейронных сетях, прочтите предыдущую запись в этой..
Классификация CIFAR-10 с использованием простой CNN
В этой статье мы просто обсудим, что такое глубокое обучение, что такое сверточные нейронные сети (CNN) и как мы можем создать простую модель CNN. В этой статье предполагается, что у вас есть базовые знания в области искусственного интеллекта, машинного обучения и программирования на Python.
Что такое глубокое обучение?
Глубокое обучение - одна из составляющих машинного обучения и искусственного интеллекта. Методы глубокого обучения пытаются имитировать функцию человеческого мозга при..
Введение в компьютерное зрение с базовыми блоками VGG в наборе данных CIFAR-10
Согласно Википедии , Компьютерное зрение - это междисциплинарная научная область, которая занимается тем, как заставить компьютеры получать высокоуровневое понимание цифровых изображений или видео.
Компьютерное зрение прошло долгий путь за эти годы и совершило значительный скачок, когда телеканал CNN под названием AlexNet достиг высочайшего уровня качества маркировки изображений в конкурсе ImageNet .
В настоящее время, с ростом популярности платформ глубокого обучения, таких как..
Новые материалы
Я хотел выучить язык программирования MVC4, но не мог выучить его раньше, потому что это выглядит сложно…
Просто начните и учитесь самостоятельно
Я хотел выучить язык программирования MVC4, но не мог выучить его раньше, потому что он кажется мне сложным, и я бросил его. Это в основном инструмент..
Лицензии с открытым исходным кодом: руководство для разработчиков и создателей
В динамичном мире разработки программного обеспечения открытый исходный код стал мощной парадигмой, способствующей сотрудничеству, инновациям и прогрессу, движимому сообществом. В основе..
Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка.
Во время предварительного обучения модель обучается на неразмеченных данных с помощью..
Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать
С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..
Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv)
Автор : Бар Лайт
Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..
Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята?
В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..
Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение.
В этом процессе мы будем использовать неконтролируемое обучение, чтобы..