Публикации по теме 'batch-normalization'
Демистификация пакетной нормализации против выпадения
Действительно ли пакетная нормализация - практическое правило? Сравнение результата с выпадением набора данных CIFAR10
Известно, что пакетная нормализация (BN) улучшает производительность модели, смягчает внутренний ковариационный сдвиг и применяет небольшой эффект регуляризации. Такие функциональные возможности BN и эмпирические исследования, доказывающие эффективность BN, помогли укрепить предпочтение людей использовать BN вместо того, чтобы бросить учебу. BN быстро заменил слой отсева..
Вскрытие пакетной нормализации: более быстрая сходимость и меньшие потери! (Эталон)
TL;DR: модели сходятся быстрее и с меньшими потерями при использовании пакетной нормализации.
Пакетная нормализация — это метод, используемый для ускорения и повышения стабильности искусственных нейронных сетей за счет нормализации входного слоя путем повторного центрирования и масштабирования. Он был предложен Сергеем Иоффе и Кристианом Сегеди в их статье 2015 года Пакетная нормализация: ускорение обучения глубокой сети за счет уменьшения внутреннего ковариатного сдвига .
3 примера..
Пакетная нормализация: ускорение глубокой сети
Изучение пакетной нормализации: один из ключевых методов улучшения обучения глубоких нейронных сетей.
Введение
Глубокое обучение произвело революцию в области искусственного интеллекта, позволив добиться впечатляющих успехов в распознавании изображений и речи, обработке естественного языка и многих других приложениях. Однако обучение глубоких нейронных сетей может быть сложным и трудоемким процессом, требующим больших объемов данных и вычислительных ресурсов.
Одним из ключевых методов..
Новые материалы
Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка.
Во время предварительного обучения модель обучается на неразмеченных данных с помощью..
Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать
С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..
Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv)
Автор : Бар Лайт
Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..
Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята?
В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..
Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение.
В этом процессе мы будем использовать неконтролируемое обучение, чтобы..
Учебные заметки: создание моего первого пакета Node.js
Это мои обучающие заметки, когда я научился создавать свой самый первый пакет Node.js, распространяемый через npm.
Оглавление
Глоссарий
I. Новый пакет
1.1 советы по инициализации..
Забудьте о Matplotlib: улучшите визуализацию данных с помощью умопомрачительных функций Seaborn!
Примечание. Эта запись в блоге предполагает базовое знакомство с Python и концепциями анализа данных.
Привет, энтузиасты данных! Добро пожаловать в мой блог, где я расскажу о невероятных..