WedX - журнал о программировании и компьютерных науках

Публикации по теме 'model-validation'


ПРОВЕРКА МОДЕЛИ-гиперпараметр
ПРОВЕРКА МОДЕЛИ-гиперпараметр Проверка модели относится к процессу подтверждения того, что модель достигает намеченной цели, насколько эффективна наша модель. 1- Метод удержания Удержание — это когда вы разделяете свой набор данных на «обучающий» и «тестовый» наборы. Учебный набор — это то, на чем обучается модель, а тестовый набор используется, чтобы увидеть, насколько хорошо эта модель работает с невидимыми данными. Обычное разделение при использовании метода задержки..

Метрика оценки RdR для оценки моделей прогнозирования временных рядов
В этом тексте я предложу вам экспериментальный метод для оценки эффективности моделей прогнозирования временных рядов, но прежде мы быстро рассмотрим популярные методы оценки временных рядов: MAE, RMSE и AIC Средняя точность прогноза Предупреждение: модель временных рядов ОЦЕНОЧНАЯ ЛОВУШКА! Эталонный показатель RdR Этот новый метод оценки RdR даст несколько преимуществ, таких как возможность: Сравните модели вместе и выберите лучшую Облегчить объяснение менеджеру или..

Новые материалы

Я хотел выучить язык программирования MVC4, но не мог выучить его раньше, потому что это выглядит сложно…
Просто начните и учитесь самостоятельно Я хотел выучить язык программирования MVC4, но не мог выучить его раньше, потому что он кажется мне сложным, и я бросил его. Это в основном инструмент..

Лицензии с открытым исходным кодом: руководство для разработчиков и создателей
В динамичном мире разработки программного обеспечения открытый исходный код стал мощной парадигмой, способствующей сотрудничеству, инновациям и прогрессу, движимому сообществом. В основе..

Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка. Во время предварительного обучения модель обучается на неразмеченных данных с помощью..

Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..

Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv) Автор : Бар Лайт Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..

Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята? В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..

Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение. В этом процессе мы будем использовать неконтролируемое обучение, чтобы..


Для любых предложений по сайту: [email protected]