Публикации по теме 'mean-squared-error'
Декомпозиция дисперсии смещения в условиях регрессии
Концепция декомпозиции дисперсии смещения очень убедительна, поскольку она помогает вам лучше понять алгоритмы и с легкостью играть с ними. Это поможет вам понять, как возникают ошибки из-за предвзятости и дисперсии в вашей модели и процессе подбора данных для лучшего выбора моделирования.
Что такое функция регрессии?
Предположим, у нас есть данные о двух переменных 𝑿 и 𝒀, функция 𝒀 — это то, что мы пытаемся предсказать, она же зависимая переменная, а 𝑿 — входная или независимая..
Что делает функция стоимости в машинном обучении.
Каждый алгоритм имеет собственную функцию стоимости, чтобы минимизировать потери при прогнозировании. Аналогичным образом линейная регрессия использует «функцию квадратичной ошибки», чтобы найти потерю с помощью математического представления ниже. Несмотря на то, что функция Squares Error не используется во многих сценариях, несмотря на то, что это основная функция для нахождения функции стоимости.
Всегда помните, что значение функции стоимости в основном зависит от гипотезы,..
Метрики регрессии для определения эффективности моделей регрессии
Регрессионные модели — это модели, которые используются для прогнозирования непрерывных или реальных значений, например , зарплаты, оценок, количества товаров, которые будут проданы, и т. д. Вот некоторые из популярных регрессионных моделей:
Линейная регрессия Регрессор дерева решений Случайный лесной регрессор Регрессор опорных векторов Регрессор повышения градиента Регрессор с экстремальным градиентом
Для расчета эффективности всех вышеперечисленных моделей мы..
Новые материалы
Я хотел выучить язык программирования MVC4, но не мог выучить его раньше, потому что это выглядит сложно…
Просто начните и учитесь самостоятельно
Я хотел выучить язык программирования MVC4, но не мог выучить его раньше, потому что он кажется мне сложным, и я бросил его. Это в основном инструмент..
Лицензии с открытым исходным кодом: руководство для разработчиков и создателей
В динамичном мире разработки программного обеспечения открытый исходный код стал мощной парадигмой, способствующей сотрудничеству, инновациям и прогрессу, движимому сообществом. В основе..
Объяснение документов 02: BERT
BERT представил двухступенчатую структуру обучения: предварительное обучение и тонкая настройка.
Во время предварительного обучения модель обучается на неразмеченных данных с помощью..
Как проанализировать работу вашего классификатора?
Не всегда просто знать, какие показатели использовать
С развитием глубокого обучения все больше и больше людей учатся обучать свой первый классификатор. Но как только вы закончите..
Работа с цепями Маркова, часть 4 (Машинное обучение)
Нелинейные цепи Маркова с агрегатором и их приложения (arXiv)
Автор : Бар Лайт
Аннотация: Изучаются свойства подкласса случайных процессов, называемых дискретными нелинейными цепями Маркова..
Crazy Laravel Livewire упростил мне создание электронной коммерции (панель администратора и API) [Часть 3]
Как вы сегодня, ребята?
В этой части мы создадим CRUD для данных о продукте. Думаю, в этой части я не буду слишком много делиться теорией, но чаще буду делиться своим кодом. Потому что..
Использование машинного обучения и Python для классификации 1000 сезонов новичков MLB Hitter
Чему может научиться машина, глядя на сезоны новичков 1000 игроков MLB? Это то, что исследует это приложение.
В этом процессе мы будем использовать неконтролируемое обучение, чтобы..